Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers.
نویسندگان
چکیده
Fiber Bragg gratings inscribed with a femtosecond laser using the point-by-point (PbP) technique have polarization dependent grating strength (PDGS) and exhibit birefringence. In this paper we quantify the dependence of these two properties on the ellipticity, position in the core and size of the micro-voids at the center of each refractive index modulation. We demonstrate that the effective modal index for type II gratings written with a femtosecond laser using the PbP method must be lower than that of the pristine fiber, and for the first time associate an axis with a polarization such that the long axis of the elliptically-shaped index modulations corresponds to the slow axis of the gratings. We exploit the PDGS of two gratings used as frequency-selective feedback elements as well as appropriate coiling, to realize a linearly-polarized fiber laser with a low birefringence fiber cavity. We show that the polarization-dependent grating strength is a function of the writing pulse energy and that only gratings optimized for this property will linearly polarize the fiber laser. The fiber lasers have high extinction ratios (>30 dB) for fiber lengths of up to 10 m and very stable polarized output powers (<0.5% amplitude fluctuations) in the range of 20-65 mW at 1540 nm. This method of polarization discrimination allows the realization of highly robust and simplified linearly polarized fiber lasers.
منابع مشابه
Compact, all fibre, linearly polarised, single-mode Ytterbium doped fibre laser utilizing point-by-point inscribed intra-core fibre Bragg gratings
We report on the development of a compact, all fibre laser source operating at 1 μm with a linearly polarized (extinction ratio > 20 dB) and very narrow linewidth (12 pm) output. The unique cavity design included a fibre Bragg grating high reflector and output coupler, inscribed via the point-by-point method directly into the active core. A single splice within the cavity between the fibre inco...
متن کاملEfficient linearly polarized ytterbium-doped fiber laser at 1120 nm.
We report a 20 W linearly polarized, spectrally clean Yb-doped fiber laser at 1120 nm with an optical conversion efficiency of 54%. An excellent polarization extinction ratio of more than 23 dB is obtained using fiber Bragg gratings (FBGs) polarization selection technique at all power levels. The results reveal that a Yb-doped fiber laser at 1120 nm could be a promising replacement compared to ...
متن کاملHighly polarized all-fiber thulium laser with femtosecond-laser-written fiber Bragg gratings.
We demonstrate and characterize a highly linearly polarized (18.8 dB) narrow spectral emission (<80 pm) from an all-fiber Tm laser utilizing femtosecond-laser-written fiber Bragg gratings. Thermally-dependent anisotropic birefringence is observed in the FBG transmission, the effects of which enable both the generation and elimination of highly linearly polarized output. To our knowledge, this i...
متن کاملPoint-by-point inscription of first-order fiber Bragg grating for C-band applications.
The influence of the fiber geometry on the point-by-point inscription of fiber Bragg gratings using a femtosecond laser is highlighted. Fiber Bragg gratings with high spectral quality and strong first-order Bragg resonances within the C-band are achieved by optimizing the inscription process. Large birefringence (1.2x10(-4)) and high degree of polarization-dependent index modulation are observe...
متن کاملThermal properties of fiber Bragg gratings inscribed point-by-point by an infrared femtosecond laser
Direct, point-by-point inscription of fiber Bragg gratings by infrared femtosecond laser had been recently reported. Response of these gratings to annealing at temperatures in range 500C to 1050C is studied for the first time. Gratings inscribed by infrared femtosecond lasers were thermally stable at temperatures up to 900C, representing a significant improvement in comparison with the “common”...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 17 8 شماره
صفحات -
تاریخ انتشار 2009